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ABSTRACT 

We empirically investigate acceleration costs in technology transfer via a replication of Teece’s 

(1977) early work on time-cost elasticities. Our dataset on the development of oil production 

facilities worldwide between 1997 and 2010 is similar to Teece (1977), but over 20 times larger. 

Our results contrast with previous studies. On average, the cost of accelerating technology 

transfer is negative: firms could have cut $7.2 million in costs by developing projects one month 

faster. For 87% of our projects, time compression diseconomies are not binding. Industry-

average technology transfer inefficiencies are significant: over 36% of project time and costs are 

unnecessary delays and overspending. Finally, we estimate the determinants of time-cost 

elasticities. Our findings reassess firms’ capital allocation decisions and the role of time in 

Strategy theories. 
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MOTIVATION 

Most prior research has postulated that accelerating a firms’ pursuit of any strategic goal 

(competitive advantage, industry leadership, or technology transfer) typically comes at the 

expense of extreme investment inefficiencies. Compressing time substantially raises costs – at an 

increasing rate. These adjustment costs are known in the strategy literature as time compression 

diseconomies (TCD). The existence of TCD critically affects strategy fundamentals and, thus, 

has been central to multiple strands of literature. For example, competitive strategy and the 

resource-based view have emphasized that TCD are a necessary and sufficient condition for 

sustainable competitive advantage: if speed were costless, rivals would imitate instantaneously 

(and vice versa) (Dierickx and Cool 1989). The existence of TCD implies that there is an optimal 

level of acceleration in firm activities. 

Although the notion of TCD is pivotal for the strategy literature, few empirical studies have 

documented its existence. The most recent empirical evidence of TCD dates back to the 1970s 

and 1980s and is based on a sparse number of observations, with sample sizes typically varying 

between 5 and 30 observations (Graves, 1989; Teece, 1977). Recent empirical studies of TCD 

have been lacking because time is often an elusive and unobservable construct; thus, measuring 

the time-consuming nature of firm actions is difficult.  

Our paper addresses this gap by investigating TCD and its determinants in the context of 

technology transfer projects. The time efficiency of technology transfer – the timely and 

effective deployment of productive knowledge to new facilities – is at the heart of successful 

organizational growth and performance. The speed and costs of the technology transfer process 

determine a firm’s ability to enter new industries, adapt to market changes, develop new 

products, and respond to rivals. Our paper replicates the early work by Teece (1977) on the 
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estimation of time-cost elasticities that measure the cost of accelerating technology transfer in 

global investments projects. The reason to replicate Teece (1977) is threefold. First, Teece 

(1977) provided perhaps the most structured and formal empirical study of TCD in technology 

transfer to date. Its precise model specification increases the comparability of results. Second, 

Teece’s (1977) empirical setting of the oil and gas industry is highly regulated, which facilitates 

data collection. Third, the economic fundamentals of the oil and gas industry have remained 

relatively stable over time, thereby enhancing comparisons and inferences. 

This replication study is long overdue. The timing of this paper is also a response to the 

mounting attention that strategy dynamics and technology transfer have received from scholars 

and practitioners. A growing body of work suggests that firms should innovate and imitate 

increasingly faster in most industries (e.g. Agarwal and Gort, 2001; D'Aveni, 1994; Jovanovic 

and MacDonald, 1994; Wiggins and Ruefli, 2005). However, without accurate empirical 

measures of the marginal costs of speeding up, it is difficult to estimate the returns and limits to 

acceleration strategies – and issue normative statements on this subject. Our paper aims at 

contributing empirical evidence of TCD to help calibrate these inferences. 

Our priority in this paper is the strict reproducibility of Teece’s (1977) results to the extent 

that our data allows. Therefore, we follow a similar research design in terms of empirical model, 

variable measurements, and estimation strategy. We then explore two necessary extensions to 

our model and estimation methodology to accommodate the specificities of our data. 

Specifically, our sample is over 20 times larger than the dataset used in Teece (1977) and comes 

from petrochemical and refinery plant construction projects worldwide from 1997 to 2010. In 

addition, our sample is based on real project data, whereas Teece (1977) used counterfactual 

observations from survey data. 
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Our results are considerably different from Teece (1977) – and from all other prior studies. 

We show that the average cost of accelerating technology transfer in the oil and gas industry is 

negative. This implies that the average firm in our sample is time inefficient in technology 

transfer: firms could simultaneously accelerate and cut costs in project development. Thus, TCD 

are often not binding in our data. The sheer magnitude of time inefficiencies in this industry is 

also striking. Our estimates indicate that, on average, oil and gas firms should have shaved over 

36 percent of their project development time. These delays resulted in unnecessary 

overspending: at least 37 percent of the industry costs could have been saved. Overall, these 

findings are consistent with qualitative industry evidence. A recent study by 

PricewaterhouseCoopers’ consulting arm “Strategy&” (formerly Booz & Company) documented 

oil and gas companies’ systematic “difficulty delivering large capital projects on time and within 

budget” with delays of several years and cost overruns as high as 350 percent (Tideman, 

Tuinstra, and Campbell, 2014: 3). Our study has important managerial implications, as it reveals 

the existence of sizeable gains to be had by firms that use time strategically in technology 

transfer. Our estimates of time-cost elasticities may also be informative for capital allocation 

decisions and for stock market valuations of firms’ timing of technology transfer and innovation. 

BRIEF LITERATURE REVIEW 

The time-cost investment tradeoff, or the general principle that ‘money buys time’ in various 

types of projects, is a core component of the theory of capital investment and asset accumulation. 

Any large investment project takes time, and an acceleration of project development time is 

likely to inflate costs – at an increasing rate. 

There are three main reasons for this time-cost tradeoff, or time compression diseconomies 

(TCD). First, firms often accelerate a project by committing more resources to the project. For 
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example, an R&D project may be accelerated by allocating more engineers to it. However, more 

human capital typically aggravates coordination costs, which leads to diminishing returns and 

higher total costs. Second, firms also speed up investments by bringing previously sequentially-

scheduled activities into parallel processing. This results in the loss of information that used to 

flow from the first to the second activity, which creates a higher incidence of mistakes, rework 

and increased costs in the second activity. Third, firms often resort to hedging by concurrently 

pursuing multiple alternative approaches to an uncertain technical problem so as to find a 

solution faster. This approach, however, also comes at a cost premium (Graves, 1989; Mansfield, 

1968; Scherer, 1966).2  

While the time-cost tradeoff has been discussed at length theoretically, there have been 

relatively few recent empirical investigations of this phenomenon. Researchers in the 1970s and 

1980s pioneered efforts to estimate the time-cost tradeoff. Mansfield (1971) collected survey 

data from project managers who considered 29 hypothetical innovation projects in the chemical, 

electrical and machinery industries. He found that for projects completed at less than 130% of 

the minimum completion time, the median elasticity was 1.75. This means that a one percent 

reduction in duration increases cost by 1.75%. To illustrate, these estimates imply that a two-

week compression of Intel’s 386 development project, which took 48 months to complete, would 

have resulted in a $3.5 million increase in development costs (Casadesus-Masanell et al. 2005). 

                                                 

2 Note that the three mechanisms leading to time compression diseconomies are affected differently by 
improvements in technology. Better technology is expected to help with coordination, reducing the diminishing 
returns associated with allocating more resources to a project. Technological advancements may also facilitate 
hedging strategies by making it easier for firms to pursue multiple potential solutions to uncertain tasks 
simultaneously. It is unclear whether better technology would have any effect on information loss from acceleration 
due to parallel processing of previously sequential activities. Overall, it is sensible to expect TCD to decrease over 
time. Finally, note also that other tradeoffs are associated with project development, such as the time-quality 
tradeoff. However, we keep these considerations constant and restrict our focus to the time-cost relationship in this 
paper. 
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Teece (1977) conducted a follow up study using survey data for 20 manufacturing projects, and 

he, too, found the elasticity to be above 1% for 15 of the projects. Similar studies of software 

engineering development projects by Boehm (1981) and Putnam and Fitzsimmons (1979) found 

that elasticity estimates generally are positive and range between 1% and 2%. Graves (1989) 

concludes that time cost elasticities are generally in the 1-2% range. 

Since these early studies, direct estimates of the time-cost tradeoff have been lacking during 

the last 30 years. Notably, all of these prior studies found very similar findings of positive 

elasticities. We believe that given these results, the field of Strategy has generally assumed that 

TCD work as an active constraint at all times – almost as a ‘law of nature’: since firms’ actions 

cannot be instantaneous, it would make intuitive sense that costs should always increase as time 

is compressed. Note, however, several caveats with these prior findings. All of these studies used 

small sample sizes and many were based on surveys asking questions about counterfactual 

hypothetical changes to time and cost for a given project, potentially creating concerns about 

how representative these results are of reality. This suggests an opportunity for a recent, large 

data empirical study of real-world projects to obtain estimates that are more generalizable and, 

thus, have greater external validity. This paper undertakes that task. 

ESTIMATES OF TIME-COST ELASTICITIES: STAGE 1 REPLICATION 

Model 

Our replication model strictly follows Teece (1977).3 Specifically, cost is a negative and convex 

function of time and assumes the form: 

                                                 

3 Note that parameter ߙ in model (1) is denoted by ߶ in Teece (1977), and vice-versa. We changed the notation so 
that ߙ and ߚ always denote the main coefficients to be estimated across all our regression models. 
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,ሺܸܥ  ߶, ,ݐ ሻߙ ൌ ܸ݁
ఈ

ሺ௧ థ⁄ ିଵሻ (1)

In model (1), ܥ is project cost and ݐ is the time that the project takes to develop. Parameter 

߶ ൐ 0 is the time asymptote representing the minimum theoretical time to complete the project if 

firms had unlimited resources, or the maximum level of time compression with infinite project 

development costs (thus, ݐ ൐ ߶). Parameter ܸ ൐ 0 is the cost asymptote that denotes the 

minimum theoretical cost for the project without scheduling constraints (ݐ → ∞). Coefficient 

ߙ ൐ 0 is a function of the direct costs associated with accelerating the project and affects the 

convexity of the cost curve with respect to time ݐ. In particular, for a given value of ݐ ߶⁄  ߙ ,

determines the elasticity of cost with respect to time, or the extent of time compression 

diseconomies (TCD): 

௖,௧ߝ  ൌ
ߙ ݐ ߶⁄

ሺݐ ߶⁄ െ 1ሻଶ
 (2)

Figure 1 is a graphical representation of model (1). The time-cost function is negatively 

sloped and convex to the origin because its first derivative is negative and the second derivative 

is positive (߲ܥ ⁄ݐ߲ ൏ 0, ߲ଶܥ ⁄ଶݐ߲ ൐ 0). All time-cost elasticities for all values of ݐ are strictly 

positive (ߝ௖,௧ ൐ 0), with elastic time compression diseconomies occurring for ݐ sufficiently small 

ݐ) ൏ 10 or ݐ ߶⁄ ൏ 2, in the example). Note also that an appealing property of this model is that 

elasticities strictly increase as time is compressed (߲ߝ௖,௧ ⁄ݐ߲ ൏ 0), as expected. 

Insert Figure 1 here 

Following Teece (1977), we transform model (1) into a linear estimable form by taking logs: 

 ln ܥ ൌ lnܸ ൅ ߙ ൬
ݐ
߶
െ 1൰

ିଵ

൅ (3) ߦ
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In model (3), variables ݐ ,ܥ, and ߶ are data and ln ܸ and ߙ are coefficients to be estimated. 

The error term ߦ is assumed to be distributed with mean zero and constant variance. As in Teece 

(1977), our main hypothesis is that the direct costs (or TCD) coefficient ߙො is positive and 

significant so that compressing time ݐ in the development of an investment project increases 

costs. This is equivalent to hypothesizing that the cost curve in Figure 1 is downward sloping in ݐ 

and that the time-cost elasticity in equation (2) is always positive. 

Data and Estimation 

Our empirical setting is the planning, engineering, and construction of new petrochemical and 

refinery production facilities worldwide between 1997 and 2010. This setting is similar to Teece 

(1977), which enhances the comparability of the replication. 

Technology transfer is central to the oil and gas industry, in particular during the development 

of new production facilities, as discussed in Teece (1977). Several key oil and gas industry 

bodies, such as the Petroleum Technology Transfer Council (PTTC), herald technology transfer 

as their primary mission. The PTTC is a national not-for-profit organization established in 1994 

by the Department of Energy to “provide a forum for transfer of technology (…) within the 

producer community”, as a “clearinghouse to disseminate drilling and production technology” 

(PTTC website). The Society of Petroleum Engineers (SPE) has also stressed that it is now ever 

more critical to “build technology transfer into the company’s operations”. According to SPE, oil 

firms are “engaging in an increasing number of [plant development] growth projects around the 

world” and the standard practice of “staff[ing] them almost entirely with US-based members” is 

no longer viable (Sumrow, 2002, in the Oil and Gas Journal). Oil and gas technology transfer in 

FDI has also become a focal issue in public policy. Multinational oil companies are often 
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contractually forced to transfer technology to host-country partner firms during new plant 

development projects to be granted government construction permits overseas. 

As explained by Teece (1977), technology transfer during new oil plant development projects 

typically exhibits time compression diseconomies (TCD). The three main drivers of the time-cost 

tradeoff identified in the literature review section are particularly salient in our setting. First, the 

deployment of firm technology to other domestic and foreign sites often involves substantial 

technological uncertainty. This uncertainty results from the need to adjust plant design 

parameters to different market-based scales of operation, material inputs, operator skills, and 

engineering standards. “When uncertainty precludes immediate identification of the best design, 

it may be desirable to ‘hedge’ by supporting several different designs. By incurring higher 

project costs, hedging can reduce the project time relative to a procedure which explores 

different designs sequentially” (p. 831). This probabilistic approach to technology transfer is 

known to create TCD. Second, crashing plant investment projects by assigning more resources 

such as chemical engineers to plant design or engineering increases job segmentation, 

coordination costs, and diminishing returns, which also results in TCD. Third, project 

acceleration by bringing sequentially-scheduled tasks (e.g. plant design, engineering, and 

construction) into parallel processing reduces information flows between tasks, causing mistakes, 

rework, and TCD. A case-in-point is firms’ attempts to speed up projects by soliciting bids from 

suppliers for equipment to be used in the last stages of plant development (i.e. construction) 

before the initial plant design phase is finalized. This helps compress time by several weeks, but 

firms often incur substantial cost penalties when design specifications are subsequently modified. 

The alternative strategy of bypassing regular equipment bidding protocols by negotiating cost-

plus contracts with suppliers is also known to be cost inefficient. Finally, as mentioned in SPE’s 
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quote above, most US firms’ conventional practice of importing skilled US-based labor to staff 

plant development abroad helps accelerate projects, but also significantly increases costs. 

Besides exhibiting TCD in technology transfer, two other features of the oil and gas industry 

also make it a good empirical setting for our replication study. The sizeable and irreversible 

nature of investment in new oil plants – with the average cost of a petrochemical facility in our 

sample being approximately $660 million – makes the timing of these type of decisions 

inherently strategic. Finally, data on time-to-build and investment project characteristics is 

available from several industry sources, which facilitates empirical work.  

The dataset used in this replication study comes from the Oil and Gas Journal (OGJ). We 

collected data on all oil and gas projects carried out worldwide from 1997 to 2010 that contained 

information on project cost and time-to-build. To mirror the sample used in Teece (1977), we 

only focus on the subset of 452 projects in our dataset that are petrochemical plants and 

refineries with available data for our covariates. Our sample is over twenty times larger in 

number of projects than Teece’s (1977) sample, which only had 20 projects. The structure of our 

data also differs. While all the observations in our sample consist of actual time-cost project data, 

Teece (1977) used a mix of actual data and hypothetical data from a survey of project managers. 

Specifically, for each of his 20 projects, Teece (1977) asked project managers to make four 

counterfactual estimates of how project costs would have changed if the project would have 

taken (a) half its actual time, (b) twice its actual time, (c) 90 percent of its actual time, and (d) 

110 percent of its actual time. Thus, each project in Teece (1977) had five observations, one 

actual – or realized – time-cost observation and four hypothetical observations. This difference in 

data structure has profound implications for the reliability of the results, but it also requires an 

adjustment to our estimation strategy, as discussed next. 
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To estimate model (3), we partition our data by project type according to standard industry 

classifications to create comparable project pools (Leffler, 2000; Burdick and Leffler, 2001). In 

particular, we consider five main project types, two in petrochemicals (olefins and plastics) and 

three in refineries (simple, complex, and very complex). We estimate our model at the project 

level within each project subgroup using OLS and a number of different control variables.4 Our 

results are generally consistent across the different sets of controls that we used, as discussed in 

the robustness checks section. We report as baseline results the regression estimates using 

control dummies for different geographic regions (Asia and the Pacific, Eastern Europe, Former 

USSR, Latin America and the Caribbean, North Africa and the Middle East, North America, 

Sub-Saharan Africa, and Western Europe). This seems sensible given the international nature of 

our data. 

The operationalization of the variables in model (3) is as follows: ܥ is project cost in millions 

of dollars (deflated to 1996) and ݐ is the number of months of plant development. Variable ߶ 

represents the vertical asymptote in Figure 1 and is a measure of the minimum theoretical time 

for each project if firms had unlimited resources, or the maximum level of time compression 

with infinite project development costs. By definition, ݐ ൌ ߶ is impossible to attain and is 

empirically unobservable in project data. Teece (1977) measured ߶ by asking “project managers 

(…) to estimate the minimum possible time in which the project could be completed” (p. 832), 

which is an imperfect proxy for this construct. In contrast, we assume that ߶ is a positive step 

function of project size – or that the minimum theoretical time of a project increases with 

increments in plant capacity (we consider quartile increments in capacity as the baseline case, 

                                                 

4 Teece (1977) needed no controls because he ran separate OLS regressions for each of the 20 projects in his sample. 
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although other step increments have also been examined). Our data was checked for 

inconsistencies with this assumption. We also assume that ߶ varies by project type, due to 

differences in project type complexity. Thus, by definition, it must be that ߶ lies in the interval 

between 0 and the minimum recorded time in our dataset for each project type and capacity 

quartile (0 ൏ ߶ ൏ min  Since ߶ is unobserved, we estimate our models for a range of possible .(ݐ

values of ߶ in 10% increments from the minimum to the maximum value of this interval. Our 

results are generally consistent across runs (namely, for ߶ equal to 10, 50, and 90 percent of the 

minimum recorded time), as mentioned in the robustness checks section. For reporting purposes 

in the paper, we use as the baseline case the value of ߶ that maximizes the log-likelihood of 

model estimation. Finally, the remaining variables in model (3), ߙ and ln ܸ, are coefficients to be 

estimated. For a given estimated value of ߙො per project type, the time-cost elasticity for each of 

the projects of that type is obtained by substituting the realized values of ݐ ߶⁄  recorded in our 

sample into equation (2). Appendix Table 1 presents the summary statistics for the variables in 

model (3). 

Results 

Table 1 summarizes our estimation results for Teece (1977) stage 1 replication model (3). Table 

2 presents the distribution of elasticities based on the same replication model. Teece’s (1977) 

original results can be found in Appendix Tables 3 and 4. In Table 1, projects are partitioned into 

two project type categories for petrochemicals and three project type categories for refineries. In 

contrast, Teece (1977) reported results for the 20 projects in his sample after running separate 

OLS regressions for each project (with five observations each), as explained above. 

Our replication results in Table 1 are substantially different from Teece (1977). Most 

importantly, Teece’s (1977) central hypothesis that the direct costs (or TCD) coefficient ߙ 
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should be positive and significant is not supported in 98% of our sample. Specifically, our 

estimates of ߙො are either not significant or negative and significant – except for very complex 

refineries where ߙො is positive and significant, as predicted. This finding is robust across different 

model (3) runs and alternative variable measurements, and it has profound qualitative 

implications. It suggests that, for 98% of our sample, the time-cost curve in models (1) and (3) 

and in Figure 1 is either time-invariant or upward sloping. This is equivalent to saying that, in 

this industry and with the exception of very complex refineries, time-compression diseconomies 

(TCD) are not a constraint in technology transfer. Seemingly, firms can accelerate without 

affecting – or even while reducing – direct project development costs. At face value, this implies 

that, for the large majority of projects in our sample, firms are time-inefficient in technology 

transfer. The finding that ߙො is only positive and significant for very complex refineries should be 

interpreted with caution given our small sample size. However, this result is consistent with 

existing theories that show that complexity generally amplifies TCD (Pacheco-de-Almeida and 

Zemsky, 2007). 

Insert Table 1 here 

Similar conclusions can be reached by analyzing the point elasticities for each of the project 

types in Table 1 and the elasticity distribution in Table 2. While Teece (1977) only had positive 

elasticities (Appendix Table 4), in our replication study most elasticities are negative. This is 

because the sign of elasticities depends only on the sign of the estimated coefficient ߙො, as per 

equation (2): when ߙො is negative, all elasticities for that project type are also negative, 

independently of the realized value of ݐ ߶⁄ . For petrochemical plastics, for example, the mean 

elasticity estimate means that, on average, accelerating technology transfer in plant development 

by 1% would also decrease costs by 1.196%. Since firms spent an average of 32.5 months and 
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$363.7 million (in 1996 dollars) to build a plastics plant in our sample, our results imply that 

firms would have saved about $13.4 million by reducing plant development time by one month. 

This time-cost efficiency gains in technology transfer would have been more modest for complex 

refineries, with savings of approximately $1.1 million (in 1996 dollars) per month shaved off in 

project development. In contrast, for very complex refineries, the positive time-cost elasticity of 

1.161 suggests that being simultaneously faster and cheaper in technology transfer for this 

project type is not possible: companies would need to devote the equivalent of $2.1 million (in 

1996 dollars), on average, to reduce time by one month. Therefore, we cannot infer that firms are 

being time inefficient in the development of very complex refinery projects. 

Insert Table 2 here 

Finally, Tables 1 and 2 show three remaining differences between Teece’s (1977) original 

results and our replication study. Interestingly, 98% of the projects in our sample have realized 

values of ݐ ߶⁄  above the maximum reported in Teece (1977). This denotes levels of time 

compression in our sample well below those documented by Teece (1977) – that is, the firms in 

our dataset accelerate their projects significantly less than those in Teece’s sample. This finding 

is generally robust across the different possible values of ߶ (0 ൏ ߶ ൏ min  This empirical .(ݐ

regularity also explains why a disproportionately large number of projects have time-cost 

elasticities in the -0.49 to 0.00 range: for sufficiently large values of ݐ ߶⁄ , marginal variations in 

time ݐ or ߙ have very little impact on elasticity. Intuitively, this occurs because the cost curve 

flattens when ݐ ߶⁄  is large, independently of the sign of ߙ (mathematically, it is easy to show that 

߲ ቚ߲ߝ௖,௧ ߲ ቀ௧
థ
ቁൗ ቚ ߲ ቀ௧

థ
ቁൗ ൏ 0 and ߲ห߲ߝ௖,௧ ⁄ߙ߲ ห ߲ ቀ௧

థ
ቁൗ ൏ 0). The last two differences between 

Tables 1 and 2 and Teece (1977) are that the values of ܴଶ are considerably lower in our 
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replication and that our estimates of the minimum theoretical cost of projects ( ෠ܸ) are larger than 

in Teece (1977), as expected given the 20-year hiatus between the two samples. The next section 

aims at explaining the discrepancies in results between Teece (1977) and our replication study. 

TWO EXTENSIONS TO STAGE ONE REPLICATION 

The existence – and large number – of negative elasticities in our results is the fundamental 

difference between our replication and Teece (1977). There are two main possible explanations 

for this difference. We use these two explanations to extend and fine-tune our replication study. 

Explanation (A): Direct and Indirect Project Costs 

The first explanation for negative elasticities is that new project development involves not only 

direct costs – as assumed in Teece (1977) and in model (3) – but also indirect project costs. 

Direct project costs are intrinsically associated with project activities (e.g. salaries, project 

materials, equipment) and increase as the pace of activities accelerates due to diminishing 

returns, information loss or concurrent investments – as extensively discussed earlier in the 

paper. In contrast, indirect project costs are overhead costs not associated with specific project 

activities, but fixed per unit of time over the life of a project. Thus, unlike direct costs, indirect 

costs increase as projects take longer to develop. Examples of indirect costs include supervision 

and administration, transportation of labor to the working site, insurance, security and 

maintenance, office rent, and taxes (Badiru 2014; Baker 1991; Smith and Reinertsen 1998). 

Since most projects in our sample took substantially longer to complete than in Teece (1977) – as 

evidenced by the larger realized values of ݐ ߶⁄  in Table 2 – indirect costs were likely more 

prominent in our replication than in Teece’s original study. As a result, for most of these projects 

with large time-to-build, total project costs increased in development time, thereby giving rise to 

an upward-sloping cost curve and negative elasticities. For all other projects with shorter time-to-



17 

 

build, direct costs and time compression diseconomies still governed the time-cost curve. The 

combination of these two effects produces a u-shaped time-cost curve, as illustrated in the left 

panel of Figure 2. We denote by minimum efficient time (MET) the level of time that minimizes 

total costs in Figure 2. Observations to the right (left) of MET are expected to have negative 

(positive) time-cost elasticities. 

Insert Figure 2 here 

Interestingly, Teece (1977) explicitly acknowledged the potential consequences of indirect 

project costs: “If the existence of some fixed costs is also postulated, then increasing project time 

need not always lower expected costs” (p. 831). The u-shaped time-cost curve in Figure 1 of his 

paper also graphically illustrated this effect. However, Teece (1977) decided not to allow for this 

empirical possibility in his model and estimation, even if evidence of indirect costs was 

unambiguously found in his data: 

“Although it was decided to estimate only the negatively sloped portion of the time-cost 
tradeoff, it is of interest to note that for 13 [out] of the [20] projects in the sample, costs 
would have increased if the expected time were doubled. Several respondents pointed out 
that inept management could quite easily create situations where it might be realized ex 
post that a project had proceeded on the positively sloped portion of the tradeoff” (p. 832) 

In our replication study, assuming away indirect costs when theory and data strongly suggest 

the opposite would cause estimation biases and incorrect inferences. Therefore, the first 

extension to our stage one replication of Teece (1977) allows for the existence of indirect project 

costs in model (1) by assuming that: 

 ܸ ൌ ఉݐݒ (4)

, where ݒ ൐ 0 and ߚ ൒ 0 so that indirect projects costs increase in ݐ. In model (4), constant ݒ 

rescales the magnitude of indirect project costs and no longer represents the minimum theoretical 

cost of a project. Thus, our estimates of ݒ in this model extension and ܸ in model (3) are not 
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directly comparable. Note that indirect costs are a linear function of time ݐ when ߚ ൌ 1 and that 

model (4) simplifies to Teece’s (1977) functional form specification when ߚ ൌ 0. Indirect costs 

were modeled as a multiplicative term in exponential form to respect Teece’s (1977) original 

model structure. An additive specification for indirect costs would have been intractable as the 

model would not have been estimable using a log transformation. Another advantage of this 

specification is that there is a simple closed-form solution for minimum efficient time (MET), 

the stationary point in the time-cost curve represented in the left panel of Figure 2:5 

ܶܧܯ  ൌ
߶
ߚ2

ቀߙ ൅ ߚ2 ൅ ඥߙଶ ൅ ቁߚߙ4 (5)

The extended model to estimate is obtained by substituting equation (4) in model (1) and 

taking logarithms: 

 ln ܥ ൌ ln ݒ ൅ߙ ൬
ݐ
߶
െ 1൰

ିଵ

൅ ߚ ln ݐ ൅ ߦ (6)

In this first extension, the data and estimation of model (6) is identical to those used in model 

(3). As before, we estimate model (6) at the project level within each of the same five project 

subgroups (olefins, plastics, and simple, complex and very complex refineries) using OLS with 

control dummies for different geographic regions. Our results are generally consistent across 

different sets of controls. The operationalization of the model variables remains unchanged. For 

a given estimated value of ߙො and ߚመ  per project type in model (6), the time-cost elasticity for each 

of the projects of that type is obtained by substituting the realized values of ݐ ߶⁄  recorded in our 

sample into the new equation for time-cost elasticity for this first model extension: 

                                                 

5 From the first-order condition for minimum in the extended model, a stationary point exists when ߚሺݐ െ ߶ሻଶ െ
߶ߙݐ ൌ 0, which is a well-behaved polynomial in ݐ with two solutions: ݐଵ ൌ

థ

ଶఉ
൫ߙ ൅ ߚ2 െ ඥߙଶ ൅ ଶݐ ൯ andߚߙ4 ൌ

థ

ଶఉ
൫ߙ ൅ ߚ2 ൅ ඥߙଶ ൅ ଵݐ ൯. It is easy to show thatߚߙ4 ൏ ߶, so the only possible solution is ܶܧܯ ൌ  .ଶݐ
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௖,௧ߝ  ൌ
ߙ ݐ ߶⁄

ሺݐ ߶⁄ െ 1ሻଶ
െ ߚ (7)

Note that, analytically, time-cost elasticities are positive when development time is smaller 

than MET (and negative otherwise) and that ߚ is the partial elasticity with respect to indirect 

costs. As before, time-cost elasticities increase with time compression (߲ߝ௖,௧ ⁄ݐ߲ ൏ 0). 

Due to space constraints, we report and discuss our estimation results for this first extension 

to our replication in the Appendix (see Appendix Tables 5 and 6). In short, our results from this 

first extension with both direct and indirect costs appear to be a substantial improvement over 

our initial Teece (1977) replication. However, our analysis can be further fine-tuned by also 

considering the second explanation for negative elasticities. 

Explanation (B): Firm Differences in Time-Cost Curves 

While the existence of both direct and indirect project costs is the first obvious explanation for 

negative elasticities in our replication, a second plausible explanation exists. The right panel in 

Figure 2 offers a stylized graphical illustration of this possibility. Even without indirect costs in 

model (1), the exact same pattern of time-cost observations represented by the two dots in Figure 

2 can be explained by the existence of firm differences in time-cost curves. In particular, if firms 

differ in their capabilities to compress time (e.g. Dierickx and Cool, 1989; Helfat et al., 2007; 

Mansfield, 1988; Pacheco-de-Almeida, Hawk, and Yeung, 2015), the slope of their time-cost 

curve also varies. In model (1), this implies that different firms have different coefficients 

associated with TCD, or direct project costs, ߙ௜ (where ݅ denotes firm). For example, in the right 

panel of Figure 2, firm 2 buys time at a lower cost than firm 1, that is, firm 2 experiences lower 

time compression diseconomies (TCD). It has been shown that the optimal development time for 

firms with lower TCD is also usually faster: specifically, when choosing the development time 



20 

 

that maximizes the difference between project revenues and costs, firms with lower TCD not 

only accelerate more but also incur lower costs (Pacheco-de-Almeida and Zemsky, 2012). 

Empirically, this implies a positive relationship between time and cost in econometricians’ 

samples, as illustrated by the two observations in the right panel of Figure 2. 

The problem with our replication study is that model (1) was estimated using OLS for each 

project type, which de facto assumes that all firms within a project type have the exact same 

direct cost (TCD) coefficient ߙ – and, thus, the same time compression capabilities and time-cost 

curve (even if the minimum theoretical time ߶ varies per project quartile). When forced to fit 

only one curve to data that exhibits a positive relationship between time and cost (as in Figure 2), 

OLS necessarily estimates an upward-sloping curve, with a negative coefficient ߙ that produces 

negative time-cost elasticities. 

One solution to this problem that accommodates explanation (B) for negative elasticities is to 

estimate model (1) (with or without indirect costs) using a Random Coefficient Model (RCM) 

(see Alcacer et al., 2015). Unlike standard regression techniques, RCM estimation offers the 

possibility to test if firms differ in model coefficients (i.e. have different ߙ and ߚ in models (1) 

and (4) above). If this is proven to be the case, then RCM estimation can predict the values of 

firm-specific coefficients (ߙ௜ and ߚ௜). Another appealing feature of RCM estimation is that the 

econometrician does not need to define how firm heterogeneity affects the firm-specific model 

coefficients: firm differences are assumed to be unobserved. This property is particularly suited 

to our empirical context because the source of firm differences in our model is firm capabilities, 

which cannot be empirically measured. The graphical example in the right panel of Figure 2 

shows how RCM estimation would allow the model coefficients to vary by firm, ultimately 

fitting downward-sloping time-cost curves to the data – thereby producing positive TCD direct 
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cost coefficients (ߙ௜ ൐ 0) and positive elasticities. Thus, the same time-cost observations that 

would have generated negative elasticities in OLS could now be consistent with positive 

elasticities under RCM estimation. 

In this second extension to the replication, we estimate model (6) with both direct and indirect 

costs using an uncorrelated RCM (by firm ݅) in two pooled regressions – for refineries and 

petrochemical projects: 

 ln ܥ ൌ ln ݒ ൅ߙ௜ ൬
ݐ
߶
െ 1൰

ିଵ

൅ ௜ߚ ln ݐ ൅ ߦ (8)

, where the intercept ln  ௜ vary by firm. Notation subscripts areߚ ௜ andߙ is non-random but ݒ

simplified for exposition purposes, but the panel structure of the data remains unchanged 

(different projects per firm over time). RCM estimation per project type (as before) is not 

feasible because more project observations per firm are needed to accommodate firm-level 

variation in the model coefficients. To increase the comparability of this set of results with prior 

model runs, we keep the level of aggregation across project types to a minimum (refineries 

versus petrochemicals) and estimate model (8) including project type dummies (olefins, plastics, 

and simple, complex or very complex refineries) as controls. Region dummies are also added.6 

Using the predicted values of ߙො௜ and ߚመ௜ per firm and the realized values of ݐ ߶⁄ , the time-cost 

elasticity and minimum efficient time (MET) for each of the projects can be calculated as: 

                                                 

6 RCM estimation results of Teece’s (1977) model (3) without indirect project costs are not reported in the paper due 
to space constraints. We run an uncorrelated RCM in model (8) because there are no obvious theoretical reasons to 
expect direct and indirect costs to co-vary (i.e. ܿݒ݋ሺߙ, ሻߚ ൌ 0). The model intercept ln  is non-random because it ݒ
works as a constant that rescales indirect costs over time and our theory does not offer any explicit rationale for why 
it should vary across firms. Another advantage of RCM estimation is that it allows us to study the time-cost trade-off 
simultaneously at the industry level (the common mean coefficients) and the firm level (the firm-specific 
coefficients). Also, by predicting firm-varying time-cost elasticities, RCM estimation enhances our second stage 
analysis to include firm-level determinants of time-cost elasticities. Finally, RCM estimation provides a more 
efficient estimation of the common mean coefficients than the alternative method of running separate OLS 
regressions for each firm in our sample. 
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௖,௧ߝ 
௜ ൌ ఈ೔௧ థ⁄

ሺ௧ థ⁄ ିଵሻమ
െ ܶܧܯ ௜ andߚ ൌ థ

ଶఉ೔
൫ߙ௜ ൅ ௜ߚ2 ൅ ඥߙ௜ଶ ൅ 	௜൯ߚ௜ߙ4 (9)

Tables 3 through 6 present the results for this second extension to the replication model. Table 

3 tabulates the regression results for model (8), in which the direct and indirect cost coefficients 

 ’are allowed to be random. The first moment of these coefficients (respectively ,ߚ and ߙ)

distributions characterize the common mean parameters for all firms in that subsample 

(petrochemicals versus refineries). The second moment of these distributions represent the 

estimated standard deviation (S.D., in the table) of the two random parameters. A significant 

standard deviation for a random coefficient suggests that this coefficient likely differs from one 

firm to the next due to unobserved firm heterogeneity (see Alcacer et al., 2015, for a review of 

RCM estimation). We report the standard error within brackets below each estimate. 

Insert Table 3 here 

In Table 3, the common means of the direct and indirect cost coefficients for both refineries 

and petrochemicals are positive and very significant, as expected. These results suggest that, on 

average, both types of costs impact the projects in our sample and (should) affect the timing of 

technology transfer in oil and gas. On the one hand, TCD is a constraint when firms sufficiently 

accelerate the development of new production facilities; on the other hand, taking too long may 

also cause substantial diseconomies. In addition, the estimated standard deviations for both direct 

and indirect costs are significant across the petrochemical and refinery subsamples. This finding 

gives credence to explanation (B): there seems to exist firm differences in time-cost curves that 

are caused by unobserved firm heterogeneity. Different firms likely have different model 

coefficients for direct costs (ߙ௜) and indirect costs (ߚ௜). As illustrated in the right panel of Figure 

2, allowing different firms to have different time-cost curves helps with model identification in 
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that we get more accurate estimates of the specific model parameterization that is generating the 

time-cost observations in our sample. Thus, certain time-cost elasticities that were initially 

reported as negative in our replication of Teece (1977) are now expected to turn positive. 

Insert Table 4 here 

Tables 4 and 5 present the elasticity distribution and summary statistics for model (8). In 

Table 4, results are tabulated by project type to facilitate comparisons with our previous tables. 

The time-cost elasticity estimates still have slightly negative mean values for most project types, 

similar to the OLS extended model results (in Appendix Table 5). The distribution of time-cost 

elasticities continue to span both positive and negative values, and the maximum values are now 

positive for four out of five project types. Plastics exhibit the largest negative mean value for 

elasticity: strategies aimed at shaving project time by 1% would save costs by 1.856%. In 

absolute terms, firms would have saved about $20.8 million (in 1996 dollars) with a one-month 

acceleration in plant development technology transfer. Very complex refineries still is the only 

project type with a positive mean time-cost elasticity. As mentioned above, this finding is 

consistent with the analytical result that TCD increase in the level of project complexity 

(Pacheco-de-Almeida and Zemsky, 2007). However, the mean elasticity of 0.141 for very 

complex refineries still is about one order of magnitude smaller than Teece (1977) estimates, 

which represents substantially lower time compression diseconomies. On average, companies 

developing very complex refineries would need to spend an extra $250,000 to crash their 

investments by one month. Table 5 also shows that only 57 out of 452 projects have positive 

time-cost elasticities and that mean elasticities turn positive and gradually increase with higher 

levels of time compression (smaller values of realized ݐ ߶⁄ ), as theoretically expected. The high 

number of negative elasticities in our sample is due to the fact that most firms take too long to 
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develop new projects, thereby incurring significant indirect costs. Indeed, average time ̅ݐ is larger 

than average ܶܧܯതതതതതത for all but one project types in Table 4. Similar evidence at the project level 

can be found in Appendix Figure 1 for our entire sample. 

Insert Table 5 here 

Figure 3 compares the time-cost elasticity distributions for Teece (1977), our initial 

replication results, and our final extended model (8) that includes explanations (A) and (B) 

(direct and indirect project costs and unobserved firm differences in time-cost curves). Teece’s 

(1977) all-positive elasticity distribution, based on 20 projects, is characteristic of time-efficient 

technology transfer, with firms operating at levels of time compression below minimum efficient 

time. However, Teece’s (1977) results are unlikely to be representative of larger samples. As 

Teece (1977) acknowledged, it is not uncommon for oil and gas firms to be time inefficient. Our 

findings support this idea, with the large majority (87%) of our 452 projects exhibiting negative 

time-cost elasticities in our final elasticity distribution for extended model (8). Unlike in our 

replication, this final distribution is less concentrated and spans both negative and positive values 

after corrections (A) and (B) discussed above. Appendix Figure 2 shows the weight of these two 

corrections in explaining the prevalence of negative elasticities in our sample. Our initial 

replication overestimated the true number of negative elasticities in our sample by about 12%. 

Insert Figure 3 here 

Table 6 presents the estimated time inefficiencies in technology transfer in the oil and gas 

industry during 1997-2010 based on our second extension results in model (8). Two main types 

of time-related inefficiencies can be identified in our model: (a) insufficient acceleration, 

characterized by project development times greater than MET that result in larger-than-desirable 

indirect costs and (b) ineffective time compression, when a firm has worse capabilities to 
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compress time than the industry average and, thus, faces greater direct cost or TCD from project 

acceleration. In Table 6, we offer two measures of insufficient acceleration – the magnitude of 

delay and the magnitude of overspending – and one measure of ineffective time compression 

dubbed TCD differentials. These three measures are defined below Table 6. For comparison 

purposes, we also report industry-wide OLS inefficiency estimates using model (6). 

Our results across models (6) and (8) show that the oil and gas industry exhibited substantial 

undue delays in technology transfer: to be efficient, the industry should have shaved over 36% of 

its project development time, on average. These delays resulted in unnecessary overspending: at 

least 37% of the industry costs could have been saved by compressing time to MET. As Teece 

(1977) put it, “clearly (…) firms [should] not wish to operate to the right of (…) [MET] under 

any sort of sensible conditions” (p. 832). These findings are consistent with recent qualitative 

reports from oil and gas industry consulting bodies, as discussed in the conclusions section. 

Insert Table 6 here 

Next, we analyze time (in)efficiency in technology transfer for a few select companies with at 

least 10 projects in our sample and magnitudes of delay inferior to the industry average (47.3% 

in model (8)). Even for these better-performing firms, significant average time and cost overruns 

are identified: 20% to 40% of development times and 16% to 30% of project costs should have 

been saved through acceleration. These results are for firms from a variety of home countries 

(US, Greece, Brazil, and Taiwan). Interestingly, three out of these four better-than-average firms 

in project scheduling are predicted to be ineffective at compressing time: with the exception of 

Chinese Petroleum Corp, all other three companies must spend marginally more than the 

industry average to accelerate investment projects. The case-in-point is perhaps Petróleo 
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Brasileiro SA with 41.2% of its TCD (or direct cost) coefficient ߙ above the industry average. 

This company is more inefficient in buying time during technology transfer than its peers.  

DETERMINANTS OF TIME-COST ELASTICITIES: STAGE TWO REPLICATION 

AND EXTENSION 

Teece (1977) conducted a second stage estimation where the time-cost elasticities were regressed 

on a series of project and firm explanatory variables. We replicate this second stage regression 

using as dependent variables the time-cost elasticities estimated by extended models (6) and (8) – 

elasticities ߝ௖̂,௧ and ߝ௖̂,௧
௜  in equations (7) and (9), respectively. Our explanatory variables are 

designed to be as close to Teece (1977) as possible. We also estimate an extended second-stage 

model with additional variables that are theoretically expected to affect time-cost elasticities. 

Since our results for time-cost elasticities ߝ௖̂,௧
௜  depend on how the different explanatory variables 

affect the main components of elasticity in equation (9), we also run supplemental regressions 

using these elasticity components as dependent variables – specifically, for the direct and indirect 

cost coefficients ߙො௜ and ߚመ௜ and time ݐ. These auxiliary regressions facilitate our interpretation of 

our second stage results. It is also important to note that using these estimated coefficients from 

stage one as dependent variables may cause econometric problems in stage two (e.g. 

heteroskedasticity). We correct for this using Hornstein and Greene’s (2012) adjusted 

Saxonhouse weighted GLS procedure by weighting all independent observations by the inverse 

of the variance of the dependent variable. 

Teece (1977) originally hypothesized that time-cost elasticities should be lower when 

engineers spend more time planning projects. This ‘front-end loading’ of plant development 

allows firms to accelerate subsequent project development stages while making fewer mistakes, 
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thereby reducing rework and costs. In contrast, Teece (1977) postulated that time-cost elasticities 

should be higher for new-to-the-firm technology because it is usually harder to accelerate 

processes requiring know-how that the firm is implementing for the first time. Teece (1977) also 

predicted that time-cost elasticities should increase for larger firms (due to inertia) and larger 

projects (due to coordination costs). Lastly, Teece (1977) also anticipated time-cost elasticities to 

increase in locations that have higher trade barriers because of firms’ greater firm incentives to 

develop projects faster given that exporting is not a viable alternative to supply those markets. 

These variables were labeled ܣ௜, ௜ܷ, ௜ܵ, ܥ௜, and ௜ܺ in Teece (1977), respectively.   

In our paper, the operationalization of these explanatory variables follows closely Teece 

(1977). New-to-the-firm technology is a dummy variable equal to 1 if the firm has not done a 

similar project within our data prior to the current project. Firm size is constructed as the natural 

log of total firm sales deflated to 1996 using the consumer price index. Project Size is the natural 

log of project cost. Trade barriers is the average level of tariffs in the host country interacted with 

a dummy that equals 1 if the firm has not executed a project in the host country in the past. Note 

that we do not observe the variable capturing the length of the planning stage in each project. We 

further include region and project type dummies due to the aggregation of our projects across 

project type and geography. These dummies may also help control for the degree of planning 

used in each project if planning differs systematically by project type or geography. Appendix 

Table 7 summarizes our variables and data sources. 

Although our central explanatory variables are identical to Teece’s (1977), our hypotheses 

differ. The reason is that our elasticities are estimated using an extended model. As explained in 

the previous sections of the paper, our extended model (8) departs from Teece (1977) by 

allowing for (A) both direct and indirect project costs and (B) firm differences in cost curves. 
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Thus, we must interpret the effects of the explanatory variables on elasticity by taking into 

account these two extensions. Our predictions follow. 

First, we expect that firms take longer to develop projects associated with new-to-the-firm 

technology because it is harder to accelerate practices that are implemented for the first time. 

Increasing observed time ݐ pushes projects along the time-cost curve to the right – towards the 

region where indirect costs matter more than direct costs. Thus, new-to-the-firm technology 

should reduce the importance of direct costs in projects, that is, have a negative or not significant 

effect on ߙො௜ in equation (9). Also, we have no obvious reason to believe that new-to-the-firm 

technology impacts projects’ indirect costs (ߚመ௜). These inferences jointly point to the fact that 

new-to-the-firm technology should reduce overall time-cost elasticities (ߝ௖̂,௧ and ߝ௖̂,௧
௜ ). 

Second, the influence of firm size on elasticities is less straightforward. Larger firms typically 

have greater overhead costs and thus, by definition, higher indirect project costs (ߚመ௜ increases), 

which reduces elasticities. However, this effect may be either offset or reinforced by how firm 

size affects direct costs. On the one hand, it is plausible to think that larger firms have more 

inertia, which thwarts time compression, thereby increasing direct costs (ߙො௜) and elasticities. On 

the other hand, larger firms also have access to larger pools of in-house talent, which should 

make acceleration easier, decreasing direct costs, (ߙො௜) and elasticities. Since it is also unclear 

how firm size affects project completion time ݐ, our net prediction for elasticities is ambiguous. 

Third, project size should have a well-defined impact on elasticities. Larger projects imply 

higher coordination costs, which increases time compression diseconomies and direct costs (ߙො௜). 

At the same time, larger projects should have more overhead costs and, thus, higher indirect 

costs (ߚመ௜). Although these two effects have opposite consequences for elasticities, larger projects 
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also take longer time (ݐ) to complete, which makes the indirect costs effect more dominant, 

thereby decreasing elasticities. 

Fourth, trade barriers affect elasticities through project revenues rather than (direct or indirect) 

project costs. Host country trade barriers limit firms’ ability to supply through exporting, which 

increases the expected revenues from building a new production facility on the host country. 

Thus, firms have more incentives to accelerate projects and time ݐ should decrease, thereby 

increasing elasticities. No changes in direct or indirect costs (ߙො௜ or ߚመ௜) are expected.  

In our extension to the second stage estimation, we go beyond Teece (1977) to include 

additional firm-specific and country-specific regressors that capture other potential drivers of 

time-cost elasticities. For instance, firms with less experience with a given technology should 

take longer to execute projects, which reduces time-cost elasticities. Technology experience is 

measured as the number of similar projects executed by the firm before the current project within 

our data. We also expect more innovative firms to have better human capital, which should 

reduce time compression diseconomies or the direct costs from acceleration and, thus, 

elasticities. Investment in R&D and technology may have a similar effect on elasticities by (a) 

facilitating coordination with increasing job segmentation and, thereby, reducing the diminishing 

returns associated with allocating more resources to speed up a project or by (b) helping firms 

pursue multiple potential solutions to uncertain tasks concurrently via better information sharing, 

which reduces time compression diseconomies. Firm innovativeness is measured in our study by 

R&D intensity, that is, R&D expense divided by firms’ total assets. We also include a more 

direct proxy for organizational inertia given by firm age. Specifically, we hypothesize that older 

firms with more inertia face greater difficulties to compress time and, thus, have higher time-cost 

elasticities. Firm age is operationalized as the number of years since the firm’s founding date. As 
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for country-specific factors, two additional explanatory variables are included. We predict that in 

more economically developed countries, with greater availability of local suppliers and better 

infrastructure, firms should have lower time-cost elasticities. Country development is measured 

as the Gross National Income (GNI) per capita in the host country. Finally, in countries with 

greater political risk, we expect project financing to be subject to higher discount rates, which 

reduces the net present value of future cash flows – thereby decreasing firms’ incentives to 

compress time and, thus, reducing time-cost elasticities. Note that our measure of political risk is 

reverse-coded: we use the POLCON political constraints index (Henisz, 2000) that assumes 

larger values for more constrained governments, which is a measure of lower political risk. 

Our final set of variables are controls. Technology transfer costs may also differ for Foreign 

Direct Investment (FDI) projects. We created a dummy FDI indicating 1 if the project is 

completed in a foreign market and 0 otherwise. The use of subcontractors may also affect the 

cost of time compression. We created a dummy Subcontractor indicating 1 if a subcontractor was 

used in the project and 0 otherwise. We also include project type, geographic region, firm, parent 

industry, and year fixed effects to further control for omitted project, firm, industry, or temporal 

heterogeneity across projects. 

Results 

Table 7 presents our second stage OLS regression results on the determinants of time-cost 

elasticities. Each column shows the dependent variable (DV) used in that model. Models (i) and 

(ii) use the time-cost elasticities from the first stage extended model (6) OLS estimation. Since 

model (6) is not our final first stage results, models (i) and (ii) in Table 7 are only reported for 

comparison purposes and not commented on in detail. Models (iii) through (vii) represent our 
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final second stage estimation results and use the time-cost elasticities from our first stage 

extended model (8) RCM estimation. 

Our pure replication results of Teece (1977) in model (vi) and the auxiliary regressions (iii) 

through (v) essentially support our hypotheses. Due to space constraints, we will not repeat again 

here our hypotheses. The only additional note worth making about this set of results is about firm 

size because we had ambiguous theoretical predictions about its effect on elasticities. 

Empirically, firm size is shown to have a negative and significant effect on the direct costs 

coefficient (ߙො௜), which suggests that larger firms access to deeper pools of in-house talent help 

reducing time compression diseconomies and make acceleration easier. This result, together with 

the fact that indirect costs increase in firm size, is shown to reduce time-cost elasticities. All 

other results conform to our hypotheses. 

Insert Table 7 here 

Our extension results in model (vii) add five additional explanatory variables and two controls 

that are theoretically expected to affect time-cost elasticities. Out of the nine main regressors in 

model (vii), all but three have the hypothesized effects on elasticities. For space constraints, we 

do not repeat here the hypotheses that find empirical support and only focus on the three 

exceptions to our predictions. Specifically, new-to-the-firm technology, firm size, and trade 

barriers are significant with the expected sign in our replication model (vi) but turn insignificant 

in model (vii). The explanation for this change in results is the fact that model (vii) includes an 

additional set of aggressive firm, industry, and year controls that pick up much of the variation 

previously explained by these variables. This is particularly the case for new-to-the-firm 

technology because model (vii) also adds a more fine-grained measure of a similar construct, 

experience with technology. The same reasoning applies to trade barriers, as model (vii) adds 
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two additional country-specific variables, country development and political constraints. As for 

controls, the FDI and subcontracting dummies are not significant in model (vii). The FDI non-

result may be explained by the fact that we already have several country-specific controls.   

Finally, the average economic impact of our results in models (v) and (vi) is as follows. When 

technology is new to the firm, projects slow down by 7.4 months and time-cost elasticity 

decreases by 1.557. A ten percent increase in firm size reduces elasticity by 0.031, whereas a ten 

percent increase in project size slows down projects by 15 days and cuts elasticity by 0.048. 

Trade barriers reduce project development time by 1.3 months and raises elasticities by 0.123. In 

model (vii), a large, one-standard deviation increase in R&D intensity is associated with 3.647 

decrease in time-cost elasticity, whereas each additional year in firm age increases elasticities by 

0.172. A significant increase in country economic development of one standard deviation leads 

to a 3.370 decrease in time-cost elasticity. Finally, a one standard deviation increase in political 

constraints is associated with a 1.583 increase in elasticity. 

ROBUSTNESS CHECKS 

We conduct multiple robustness checks. First, we tried multiple alternative econometric 

specifications. In our results, we present runs using both OLS and RCM and obtained very 

comparable results. As an additional check, we tried firm fixed effects and firm random effects 

in stage one, and we received qualitatively similar results. Second, temporal factors such as 

changes in technology over time could affect the time cost tradeoff. In the stage two extended 

estimations, we included year effects to account for this possibility. As a robustness check, we 

also tried including year dummies in stage one estimations, and we obtained similar results.  

Third, involvement of subcontractors could affect the time cost tradeoff. In our second stage 

extended estimations, we included a dummy for whether a subcontractor was involved in the 
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project, and it came out insignificant. We also tried including the subcontractor dummy in stage 

one runs, and we received similar results. Fourth, for our stage two estimations, we tried 

alternative ways to construct variables. For project size, we tried the natural log of project 

capacity, the natural log of expected cost, and the natural log of actual cost, and we found similar 

results across the alternative approaches. We also tried alternative firm size variables (using total 

assets) and firm innovativeness measures (using R&D/Sales), and we received similar results. 

Fifth, we reran our stage two analysis using only stage one elasticities for project types that had 

significant direct and indirect cost coefficients in the extended model OLS (olefins and simple 

refineries in Appendix Table 5). While our second stage sample size shrinks substantially with 

this restriction, we continue to get results for our stage two replication that look similar to our 

baseline results. 

Sixth, our results could be sensitive to the values set for the vertical asymptote ߶. We set ߶ to 

the value in the interval between 0 and minimum ݐ (moving in 1/10th increments) that maximized 

the log-likelihood function of the replication model. We also tried numerous alternatives such as 

setting ߶ equal to 1/10th, ½, and 9/10th the interval, and we continued to obtain a similar 

frequency of negative elasticities. Sixth, we tried an alternative approach to setting minimum 

efficient time (MET). As an exercise, we set MET based on the empirical results of Teece 

(1977). According to Teece, for 13 out of his 20 projects (65% of the sample), cost would have 

increased if time would have doubled (footnote 5 in Teece 1977). This implies that, for these 

projects, MET was between ݐ and	2ݐ. From Table 2 in Teece (1977), we also know that ݐ/߶ 

varies between 1 and 2. To be conservative, since larger MET decreases the percentage of 

negative elasticities, we took the largest of both values and set MET equal to 4߶. Using this 

method to set MET, we took our sample, made random draws of 65% of our projects, and 
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calculated the frequency that projects had actual time ݐ greater than MET – that is, a negative 

elasticity. We tried 100, 500 and 1000 random draws, and we consistently found negative 

elasticities to comprise over 60% of our sample. If we take the same approach but set ߶ equal to 

9/10th of the interval from 0 to minimum actual time ݐ within each project type, we would still 

get negative elasticities for over 30% of the sample. These result suggest the core results of the 

paper, a high frequency of negative time-cost elasticities, would be observed across multiple 

approaches to setting MET and ߶. 

DISCUSSION AND CONCLUSION 

This paper examines the cost of accelerating technology transfer for investments in oil and gas 

production facilities worldwide from 1997 to 2010. Specifically, we replicate and extend Teece’s 

(1977) estimation of time-cost elasticities and their determinants using a similar empirical 

setting. Our results are of topical interest because the timing of technology transfer continues to 

be central to organizational performance and no other studies have been conducted on this 

subject since the 1980s. 

Our findings lie in stark contrast with Teece (1977) and all other previous studies. We show 

that the average cost of accelerating technology transfer in the oil and gas industry is negative. 

This suggests that time compression diseconomies (TCD) – a tradeoff between time and costs – 

are often not binding in this industry. The average firm in our sample is time inefficient in 

technology transfer: firms could simultaneously shave time and cut costs in project development. 

This result is also striking by its incidence and magnitude. While in Teece (1977) all time-cost 

elasticities were positive, in our sample 87 percent of the 452 projects and all but one project 

type exhibited negative elasticities. Petrochemical plastics displayed the largest negative mean 
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value for elasticity: firms would have saved about $20.8 million (in 1996 dollars) with a one-

month acceleration in plant development technology transfer. Despite hovering around negative 

mean values, our overall distribution of time-cost elasticities also spans to positive values. Very 

complex refineries were the only project type with a positive mean elasticity, which is evidence 

of time compression diseconomies (TCD). Interestingly, this is consistent with the theoretical 

finding that TCD generally increase in the level of project complexity (Pacheco-de-Almeida and 

Zemsky, 2007). On average, companies developing very complex refineries would need to spend 

an extra $250,000 to crash their investments by one month. The maximum value assumed by 

time-cost elasticities in our sample was 15.6, which is equivalent to the maximum estimates in 

other early papers (e.g. Mansfield, 1988). Another empirical regularity in our sample is that 

mean elasticities turn positive and gradually increase with higher levels of time compression, as 

theoretically expected. 

The difference in results between our paper and previous work can be explained as follows. 

Most classical studies on time-cost elasticities used small samples (e.g. 28 projects in Mansfield, 

1971; 20 projects in Teece, 1977). In addition, this data was often collected through surveys of 

project managers with questions about the hypothetical costs of a project if counterfactual levels 

of acceleration had occurred. This approach led “Mansfield [to] caution that there may be 

considerable errors in the manager’s estimate of the time-cost tradeoff” (Graves 1989: 6). This 

concern found support in our analysis: our use of a sample with actual data that is over 20 times 

larger than Teece’s (1977) revealed levels of project acceleration well below those previously 

reported. About 98 percent of the projects in our data were developed more slowly than the 

slowest project in Teece’s (1977) sample. And, as Teece (1977: footnote 5) conceded, taking too 

long to develop projects also causes substantial diseconomies as firms incur indirect project costs 
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(i.e. overhead costs not associated with specific project activities, but fixed per unit of time). 

While Teece (1977) did not focus on indirect project costs (p. 832), we extended our model to 

allow for this possibility. This approach allowed us to empirically observe that a large fraction of 

the projects in this industry are developed past their minimum efficient time (MET) – in a region 

of the time-cost curve where indirect costs prevail and total costs increase with further delays. As 

Teece (1977) put it, “clearly (…) firms [should] not wish to operate to the right of (…) [MET] 

under any sort of sensible conditions” (p. 832). 

Time inefficiencies in the oil and gas industry can be significant. Our estimates indicate that 

the industry should have shaved over 36 percent of its project development time, on average. 

This delays resulted in unnecessary overspending: at least 37 percent of the industry costs could 

have been saved by compressing time down to MET. Also, our random coefficient model 

estimation showed that even the best-performing firms incurred in significant average time and 

cost overruns. Overall, these findings are consistent with qualitative industry evidence. For 

instance, PricewaterhouseCoopers’ consulting arm “Strategy&” (formerly Booz & Company) 

issued a recent study on the oil and gas industry that documented companies’ systematic 

“difficulty delivering large capital projects on time and within budget” (Tideman, Tuinstra, and 

Campbell, 2014: 3). According to this report, “delays can be on the order of years, and cost 

overruns can reach as high as 350 percent” (p. 6). The authors advance a number of different 

reasons for these severe time inefficiencies – one of the most salient being the exact same reason 

offered by Teece’s (1977) survey respondents for project delays: “inept management” (p. 832).7,8  

                                                 

7 Most other causes – labor shortages, labor cost increases, policy changes, etc. – are manifestations of risks that 
could be identified with better management practices (e.g. with more extensive up-front project planning). 
8 A recent BCG study has also reported time inefficiencies in fast-moving consumer goods industries (Bascle et al., 
2012). Our preliminary analysis of the semiconductor industry has also found early evidence of negative elasticities. 
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Our results have several implications for the strategy and business economics literature. First, 

we show that TCD exist but are not an active constraint for the time regimes in which most of 

the firms in our sample operate. Prior work has generally assumed that TCD and lead time are 

effective mechanisms to sustain competitive advantage and protect intellectual property assets 

(e.g., Cohen et al. 2002; Dierickx and Cool, 1989; Pacheco-de-Almeida and Zemsky, 2007). In 

contrast, our study found evidence of ‘reverse TCD’, or economies of time compression. 

Second, it has long been assumed that technology transfer is often slowed down because “the 

information used in technical problem solving is costly to acquire, transfer, and use in a new 

location – [that is, knowledge] is (…) ‘sticky’ (von Hippel, 1994). The literature has extensively 

discussed the characteristics of knowledge, the transferor, and the transferee that create these 

costs of knowledge transfer (e.g., Szulanski, 1996; for a review, see Bozeman, 2000). 

Interestingly, cost impediments do not seem to be the main cause of knowledge ‘stickiness’ in 

our setting because accelerating technology transfer would, on average, have reduced costs. 

Third, our study also has a number of lateral implications for other literatures. It may imply 

lower-than-expected actual costs of faster technology diffusion within an industry – where 

technology diffusion costs have long been assumed to protect first-mover advantages (Lieberman 

and Montgomery, 1988). Our empirical setting also seems far from the relentless, ever-

increasing, rent-dissipating patterns of time competition assumed in the technology adoption, 

hypercompetition, Red Queen, and time-based competition literatures (Barnet and Hansen, 1996, 

D’Aveni, 1994; Fudenberg and Tirole, 1985; Stalk, 1990).  

Finally, our second stage results on the determinants of time-cost elasticities contribute to our 

understanding of investment lags and adjustment costs in the theory of capital investment and 

firm growth. Specifically, we show that time-cost elasticities decrease with the newness of 
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technology, firm size and project size mostly due to an indirect positive effect on project 

development delays. Investments in R&D also cut elasticities, arguably by reducing diminishing 

returns associated with allocating more resources to accelerate projects. In addition, it is easier to 

compress time in more developed countries, likely due to better existing infrastructure. In 

contrast, older firms exhibit higher levels of time-cost elasticity, probably as a result of 

organizational inertia. Trade barriers and country political risk impact the revenue incentives 

from investment acceleration, thereby affecting time-cost elasticities. Higher host-country trade 

barriers and lower political risk are expected to give firms more incentives to accelerate projects, 

which increases time-cost elasticities. 

Our study has important managerial implications, as it revealed the existence of a sizeable 

gain to be had by firms that sufficiently accelerate technology transfer. On average, oil and gas 

firms should consider cutting their project development times by at least 36 percent. The mean 

time-cost elasticity estimates for each level of time compression provided in our tables should 

also help firms gauge their marginal financial incentives to accelerate projects and optimize the 

timing of technology transfer. This data may also prove informative to stock market analysts’ 

valuations of firm technology transfer and innovation timing. Our analysis of the main 

determinants of time-cost elasticities points to additional levers that firms can often use to more 

accurately control their time-cost investment profile.  
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FIGURES AND TABLES 

Figure 1: The original model (1) estimated by Teece, 1977 (ܸ ൌ ߶ ൌ 5, and ߙ ൌ 0.5). 

Figure 2: The two alternative explanations for negative elasticities (left panel: models (1) and (4) with ݒ ൌ 1, ߶ ൌ
2.5, ߙ ൌ 1.5 and ߚ ൌ 0.6; right panel: model (1) with ܸ ൌ 4, ߶ ൌ 2, ߚ ൌ 0 and ߙଵ ൌ 5 versus ߙଶ ൌ 20).
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Figure 3: The distribution of estimated elasticities for Teece (1977), our replication model (3), and the extended model 
(8) RCM (with direct and indirect project costs and firm differences in time-cost curves). 
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Table 1: Replication model (3) OLS estimation with region dummies (DV: ln  ሻܥ

Project type N ෠ܸ  ߶ത ߙො ܴଶ  Point elasticity  

  ($M) (months)   Mean Min Max 

Petrochemicals: Olefins 70 42.407*** 7.831 -0.227 0.269 -0.278 -2.776 -0.014 

  (0.742)  (0.332)     

Petrochemicals: Plastics 60 84.424*** 1.342 -20.886*** 0.201 -1.196 -2.469 -0.309 

  (1.247)  (6.771)     

Refineries: Simple 145 97.669*** 0.533 -1.709 0.355 -0.053 -0.183 -0.007 

  (0.876)  (6.364)     

Refineries: Complex 167 16.643** 0.531 -8.279* 0.195 -0.269 -0.963 -0.029 

  (1.263)  (4.274)     

Refineries: Very complex 10 55.536*** 2.341 16.086* 0.939 1.161 0.554 1.937 

  (0.708)  (7.466)     

Total 452 — — — — — — — 

* p < 0.1, ** p < 0.05, *** p < 0.01; ෠ܸ  is the natural antilogarithm of the constant estimate; Note: the parameter ߙ is denoted by ߶ in Teece (1977), and vice-versa 
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Table 2: The distribution of elasticities for the replication model (3) OLS estimation with region dummies (DV: ln  ሻܥ

Point elasticity Realized ݐ ߶⁄  Total 

 1.00–1.25 1.26–1.50 1.51–1.75 1.76–2.00 2.01–10.00 10.01–20.00 20.01–30.00 30.01–40.00 40.01–50.00 Over 50.00  

Mean — -2.213 -1.047 — -0.132 -0.659 -0.433 -0.227 -0.156 -0.070 — 

Min — -2.776 -1.097 — -0.426 -2.469 -1.141 -0.731 -0.527 -0.381 — 

Max — -1.538 -0.965 — -0.029 1.937 0.761 0.554 -0.036 -0.007 — 

S.D. — 0.513 0.072 — 0.102 0.935 0.425 0.211 0.133 0.065 — 

(-3.00) – (-2.50) 0 1 0 0 0 0 0 0 0 0 1 

(-2.49) – (-2.00) 0 2 0 0 0 8 0 0 0 0 10 

(-1.99) – (-1.50) 0 1 0 0 0 8 0 0 0 0 9 

(-1.49) – (-1.00) 0 0 2 0 0 11 8 0 0 0 21 

(-0.99) – (-0.50) 0 0 1 0 0 19 9 9 2 0 40 

(-0.49) – 0.00 0 0 0 0 55 33 36 60 44 133 361 

0.01 – 0.50 0 0 0 0 0 0 0 0 0 0 0 

0.51 – 1.00 0 0 0 0 0 1 2 1 0 0 4 

1.01 – 1.50 0 0 0 0 0 3 0 0 0 0 3 

1.51 – 2.00 0 0 0 0 0 3 0 0 0 0 3 

2.01 – 2.50 0 0 0 0 0 0 0 0 0 0 0 

2.51 – 3.00 0 0 0 0 0 0 0 0 0 0 0 

3.01 – 3.50 0 0 0 0 0 0 0 0 0 0 0 

3.51 – 4.00 0 0 0 0 0 0 0 0 0 0 0 

4.01 – 10.00 0 0 0 0 0 0 0 0 0 0 0 

Over 10.00 0 0 0 0 0 0 0 0 0 0 0 

Total 0 4 3 0 55 86 55 70 46 133 452 

Note: the parameter ߶ is denoted by ߙ in Teece (1977) 
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Table 3: Extended model (8) RCM estimation with region and project type dummies 
DV: ln  Petrochemicals  Refineries ܥ

 Mean S.D.  Mean S.D. 

ln ෢ݒ  -3.196*** —  -2.060 — 
 (0.898) —  (1.732) — 

 ***ො 1.519*** 0.889*  18.936** 12.451ߙ

 (0.491) (0.582)  (9.081) (4.000) 

መߚ  1.940*** 0.203***  1.154*** 0.216*** 

 (0.260) (0.045)  (0.314) (0.043) 

Region dummies Yes  Yes 

Project type dummies Yes  Yes 

Number of observations 130  322 

Log-likelihood -204.660  -571.299 

* p < 0.1, ** p < 0.05, *** p < 0.01; S.D. significance reported for a one-tail t-test 

 
 
 
  



46 

 

 
 

Table 4: Extended model (8) RCM estimation with region and project type dummies (contd.) 
Project type N ߶ത ܶܧܯതതതതതത ̅ݐ Point elasticity 

  (months) (months) (months) Mean Min Max 

Petrochemicals: Olefins 70 7.831 18.065 37.968 -0.312 -2.183 15.613 
        

Petrochemicals: Plastics 60 1.342 3.127 32.530 -1.856 -2.247 -1.542 

        

Refineries: Simple 145 0.533 10.286 29.825 -0.505 -1.200 3.091 

        

Refineries: Complex 167 0.531 10.358 29.094 -0.494 -1.152 2.075 

        

Refineries: Very complex 10 2.341 42.173 40.410 0.141 -0.300 0.789 

        

Total 452 — — — — — — 
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Table 5: The distribution of elasticities for the extended model (8) RCM estimation with region and project type dummies (DV: ln 	ሻܥ
Point elasticity Realized ݐ ߶⁄  Total 

 1.00–1.25 1.26–1.50 1.51–1.75 1.76–2.00 2.01–10.00 10.01–20.00 20.01–30.00 30.01–40.00 40.01–50.00 Over 50.00  

Mean — 9.355 4.689 — -1.090 -0.374 -0.767 -0.694 -0.761 -0.911 — 

Petrochemicals — 9.355 4.689 — -1.090 -1.833 -1.843 -1.816 -1.780 -1.937 — 

Refineries — — — — — 0.627 -0.285 -0.529 -0.664 -0.887 — 

Min — 0.877 2.794 — -2.183 -2.247 -2.124 -2.046 -1.842 -2.072 — 

Max — 15.613 8.476 — 2.425 3.091 0.255 -0.266 -0.373 -0.554 — 

S.D. — 6.266 3.280 — 0.870 1.366 0.757 0.450 0.337 0.211 — 

(-3.00) – (-2.50) 0 0 0 0 0 0 0 0 0 0 0 

(-2.49) – (-2.00) 0 0 0 0 3 4 1 1 0 1 10 

(-1.99) – (-1.50) 0 0 0 0 15 30 16 8 4 2 75 

(-1.49) – (-1.00) 0 0 0 0 21 1 0 0 0 31 53 

(-0.99) – (-0.50) 0 0 0 0 6 2 3 39 38 99 187 

(-0.49) – 0.00 0 0 0 0 4 9 29 22 4 0 68 

0.01 – 0.50 0 0 0 0 2 15 6 0 0 0 23 

0.51 – 1.00 0 1 0 0 2 10 0 0 0 0 13 

1.01 – 1.50 0 0 0 0 1 6 0 0 0 0 7 

1.51 – 2.00 0 0 0 0 0 5 0 0 0 0 5 

2.01 – 2.50 0 0 0 0 1 3 0 0 0 0 4 

2.51 – 3.00 0 0 2 0 0 0 0 0 0 0 2 

3.01 – 3.50 0 0 0 0 0 1 0 0 0 0 1 

3.51 – 4.00 0 0 0 0 0 0 0 0 0 0 0 

4.01 – 10.00 0 1 1 0 0 0 0 0 0 0 2 

Over 10.00 0 2 0 0 0 0 0 0 0 0 2 

Total 0 4 3 0 55 86 55 70 46 133 452 
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Table 6: Estimated time inefficiencies in technology transfer in the oil and gas industry during the 1997-2010 period 

 Time inefficiencies in technology transfer 

 Insufficient acceleration  Ineffective time compression 

 Magnitude of delaya Magnitude of overspendingb  TCD differentialsc 

Oil and gas industry average: Extended model (8) RCM 47.3% 43.3%  — 

Oil and gas industry average: Extended model (6) OLS 36.9% 37.9%  — 

     

Firms with below-average delay (and ௜ܰ ൒ 10): Ext. model RCM     

Chinese Petroleum Corp 39.9% 30.0%  -39.6% 

Hellenic Petroleum SA 33.8% 31.0%  21.2% 

Petróleo Brasileiro SA 35.1% 34.1%  41.2% 

Valero Energy Corp 26.6% 16.6%  19.1% 

a Percentage of project time above minimum efficient time (ܶܧܯ), ሺݐ െ ሻܶܧܯ ⁄ݐ , on average across projects; b Percentage of predicted project cost above the predicted cost at ܶܧܯ, 

ቀܥመሺݐሻ െ ሻቁܶܧܯመሺܥ ሻൗݐመሺܥ , on average across projects; c Percentage of the time compression diseconomies coefficient above (or below) the industry average, ሺߙො௜ െ ොሻߙ ⁄ො௜ߙ , on average 

across projects. Note that this measure is also a proxy for the percentage of the time-cost elasticity above (or below) the industry average, ሺߝ௜̂ െ ሻ̅ߝ ⁄௜̂ߝ , when ߚመ௜ is sufficiently small. 
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Table 7: The determinants of time-cost elasticities, OLS estimation	
Variable Stage 1: Ext. model OLS  Stage 1: Extended model RCM 

 DV: ߝ௖̂,௧  DV: ߙො௜ DV: ߚመ௜ DV: ݐ DV: ߝ௖̂,௧
௜  

 (i) (ii)  (iii) (iv) (v) (vi) (vii) 

Constant 9.349** -16.752  16.592*** 0.825*** 15.803 4.762* -22.044***

 (4.420) (15.125)  (4.459) (0.122) (17.213) (2.544) (7.440) 

New-to-the-firm technology -1.974*** 0.660  -0.685 0.005 7.466** -1.557*** 0.313 
( ௜ܷ dummy in Teece, 1977) (0.640) (0.850)  (0.814) (0.022) (3.144) (0.465) (0.434) 

Firm size -0.174 1.384  -0.465* 0.017** -0.823 -0.310** 0.898 
( ௜ܵ variable in Teece, 1977) (0.196) (1.583)  (0.264) (0.007) (1.020) (0.151) (0.752) 

Project Size -0.945*** -0.837***  1.605*** 0.028*** 5.018*** -0.477*** -0.286** 
 (0.135) (0.146) (0.988) (0.007) (0.256)  (0.252) (0.191) (௜ variable in Teece, 1977ܥ)

Trade barriers 0.065 -0.009  -0.054 -0.003 -1.344*** 0.123** 0.001 
(proxy for ௜ܺ dummy in Teece, 1977) (0.063) (0.112)  (0.088) (0.002) (0.341) (0.050) (0.059) 

Experience with technology  0.419*      0.225** 

  (0.217)      0.110 

R&D intensity  -438.685**      -364.740***

  (192.461)      (92.859) 

Firm age  0.024      0.172*** 

  (0.030)      (0.053) 

Country development  -0.219**      -0.188*** 

  (0.087)      (0.039) 

Political constraints  9.713***      7.917*** 

  (3.466)      (1.739) 

FDI (dummy)  -0.989      -0.090 

  (1.887)      (0.913) 

Subcontractor (dummy)  -0.380      -0.538 

  (1.178)      (0.598) 

Control dummies:         

Region / Project type Yes Yes  Yes Yes Yes Yes Yes 

Firm / Industry / Year No Yes  No No No No Yes 

Number of observations 125 122  125 125 125 125 122 

F-test for model 9.74*** 5.46***  88.81*** 220.58*** 4.69*** 7.46*** 12.83*** 

ܴଶ 0.511 0.860  0.905 0.959 0.335 0.444 0.935 

* p < 0.1, ** p < 0.05, *** p < 0.01; variable ܣ௜ in Teece (1977) N/A (the percentage of time allocated to the project planning stage); 
Estimation includes Hornstein and Greene’s (2012) correction for the use of estimated coefficients as dependent variables in the second stage 
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Appendix Figure 1: Actual time versus minimum efficient time (ܶܧܯ) for all sample 
observations in the extended model (8) RCM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Appendix Figure 2: The prevalence of negative elasticities in the different estimated models (explanation 

(A): direct and indirect project costs; explanation (B): firm differences in time-cost curves).
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Appendix Table 1: Summary statistics for first stage models (3), (6), and (8) 

Variable Mean S.D. Min Max 1 2 3 

1. ln 0.09- 1.77 4.38 ܥ 8.67 1   

2. ቀ
௧

థ
െ 1ቁ

ିଵ
 0.11 0.31 0.00 3.03 0.16 1  

3. ln 0.29 4.98 1.62 0.67 3.23 ݐ -0.19 1 

Appendix Table 2: Summary statistics for the second stage model 

Variable Mean S.D. Min Max 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

௖̂,௧ (Stage 1 OLS) -0.48 1.77 -2.28ߝ .1 14.45 1                

௖̂,௧ߝ .2
௜  (Stage 1 RCM) -0.73 1.22 -2.25 9.00 0.85 1               

ො௜ (Stage 1 RCM) 14.79 11.22 0.47 32.20 0.09ߙ .3 0.29 1              

መ௜ (Stage 1 RCM) 1.47 0.43 0.91 2.28 -0.10ߚ .4 -0.31 -0.72 1             

28.25 20.16 5.70 114.63 -0.36 (actual time) ݐ .5 -0.43 -0.07 0.23 1            

6. New-to-the-firm technology 0.58 0.49 0.00 1.00 -0.15 -0.14 -0.30 0.09 -0.06 1           

7. Firm size 10.06 1.44 4.07 12.38 0.05 -0.11 -0.19 0.20 0.02 -0.21 1          

8. Project size 4.50 1.71 0.90 8.20 -0.19 -0.21 -0.09 0.47 0.53 -0.20 0.08 1         

9. Trade barriers 2.74 4.37 0.00 28.90 0.06 -0.00 -0.26 0.20 -0.13 0.37 -0.06 0.05 1        

10. Experience with technology 1.59 3.12 0.00 16.00 0.04 0.03 0.50 -0.14 0.19 -0.60 0.16 0.10 -0.28 1       

11. R&D intensity 0.01 0.01 0.00 0.07 0.05 -0.05 -0.32 0.34 -0.03 0.12 0.09 0.06 0.20 -0.08 1      

12. Firm age 65.28 40.59 0.00 139.00 0.12 -0.00 -0.39 0.30 -0.29 0.16 0.23 -0.09 0.21 -0.21 0.49 1     

13. Country development 25.36 17.90 0.503 53.77 -0.06 0.08 -0.04 -0.30 -0.45 0.14 -0.19 -0.46 -0.23 -0.27 -0.02 0.19 1    

14. Political constraints 0.36 0.20 0.00 0.72 0.16 0.35 0.43 -0.38 -0.45 0.01 -0.16 -0.37 -0.17 0.00 -0.01 0.08 0.36 1   

15. FDI (dummy) 0.30 0.46 0.00 1.00 0.10 -0.07 -0.41 0.35 -0.04 0.07 0.42 0.14 0.42 -0.21 0.30 0.38 -0.26 -0.22 1  

16. Subcontractor (dummy) 0.89 0.32 0.00 1.00 -0.03 -0.07 -0.08 0.12 0.11 -0.26 0.21 0.04 -0.24 0.18 0.14 0.15 -0.02 0.03 0.00 1 
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Appendix Table 3: Original Teece (1977) estimation (DV: ln  ሻܥ

Project ෠ܸ  ො ܴଶߙ ߶ 
 ($K) (months)   

1 260 9 0.024 0.61 

2 1,998 20 0.068 0.69 

3 3,964 14 0.065 0.99 

4 796 11 0.146 0.99 

5 578 32 0.174 0.90 

6 1,808 28 0.070 0.98 

7 9,228 24 0.089 0.55 

8 3,197 15 0.030 0.95 

9 111 3 0.279 0.96 

10 459 10 0.072 0.94 

11 1,615 21 0.007 0.82 

12 11,395 30 0.119 0.96 

13 29,971 61 0.028 0.98 

14 2,470 20 0.115 0.95 

15 654 12 0.053 0.94 

16 3,901 22 0.122 0.91 

17 12,100 27 0.560 0.79 

18 4,745 36 0.185 0.78 

19 10,872 36 0.021 0.97 

20 620 17 0.041 0.97 

Note: the parameter ߙ on this table is denoted by ߶ in Teece (1977), and vice-versa   
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Appendix Table 4: The distribution of elasticities in Teece (1977) original estimation (DV: ln  ሻܥ

Point Elasticity Realized ݐ ߶⁄  Total 

 1.00 – 1.25 1.26 – 1.50 1.51 – 1.75 1.76 – 2.00  

0 – 0.50 1 0 1 0 2 

0.51 – 1.00 2 1 0 0 3 

1.01 – 1.50 1 1 0 1 3 

1.51 – 2.00 3 0 0 0 3 

2.01 – 2.50 2 1 0 0 3 

2.51 – 3.00 1 1 0 0 2 

3.01 – 3.50 2 1 0 0 3 

Over 3.50 1 0 0 0 1 

Total 13 5 1 1 20 

Note: the parameter ߶ on this table is denoted by ߙ in Teece (1977); the original table had two typos in the second column 
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We present here the estimation of the first extension to our replication regarding explanation (A). Appendix Table 5 reports the results. 

If we compare these results to our initial replication in Table 1 in the paper, a few stark differences are visible. First, as hypothesized, 

in Appendix Table 5 all of the estimated parameters for direct costs (ߙ) and indirect costs (ߚ) are positive – unlike in Table 1 – and 

some are significant. Specifically, for olefins and simple refineries both ߙ and ߚ are positive and significant; for plastics, ߚ is positive 

and significant but ߙ is not significant. These findings suggest that time compression diseconomies take effect in olefins and simple 

refineries when projects are sufficiently accelerated. The significance of ߚ for olefins, simple refineries, and plastics implies that 

indirect costs are particularly relevant for these project types. The interpretation of the constant estimate in Table 1 and Appendix 

Table 5 is non-comparable: while ܸ denotes the minimum theoretical cost of a project, ݒ simply rescales the magnitude of indirect 

project costs. Thus, unlike Table 1, Appendix Table 5 does not report the natural antilogarithm of the constant estimate. The lack of 

significance of the model constant across most project types implies that there is no rescaling adjustment needed for indirect costs. 

Insert Appendix Table 5 here 

Second, the fit of extended model (6) is better for most project types than the fit of Teece’s (1977) model (3) reported in our initial 

replication results. In Appendix Table 5, ܴଶ is substantially higher for Olefins and Plastics and slightly higher for simple and complex 

refineries than in Table 1, whereas ܴଶ is comparable across models for very complex refineries. 

Third, summary statistics for the estimated time-cost elasticities per project type can be found on the right-hand side of Appendix 

Table 5 and the distribution of elasticities is presented in Appendix Table 6. Overall, we obtain fairly similar mean estimates of time-



Appendix: The Cost of Accelerating Technology Transfer | Explanation (A) Estimation Results    55 

 

cost elasticities as in the replication model. However, the maximum values of elasticities are more positive in the extended model. 

While in the replication we received strictly negative time-cost elasticity estimates for four out of five project types, we now obtain 

some positive values using the extended model for three out of five project types. The maximum elasticity gets as high as 17 for 

Olefins and 2.7 for simple refineries. Appendix Table 6 shows that 53 out of 452 projects in the extended model have positive time-

cost elasticities. Elasticities turn positive and gradually increase as ݐ ߶⁄  is reduced, which means that time compression diseconomies 

intensify as firms accelerate projects, as expected. This observation has another profound implication: while in Table 1 negative 

elasticities are due to the negative direct cost coefficients (ߙ), in Appendix Tables 5 and 6 negative elasticities result from firms taking 

too long to develop projects and, thus, incurring substantial indirect project costs. To see this, consider the two project types for which 

both direct and indirect cost coefficients are significant, olefins and simple refineries. In both cases, the average project development 

time (̅ݐ) is well beyond the average minimum efficient time (ܶܧܯതതതതതത) for the projects, that is, firms are operating in the upward sloping 

part of the time-cost curve. This finding suggests substantial time inefficiencies in technology transfer. 

Insert Appendix Table 6 here  
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Appendix Table 5: Extended model (6) OLS estimation with region dummies (DV: ln  ሻܥ

Project type N ln ෢ݒ  ߶ത ߙො ߚመ	 	̅ݐ തതതതതതܶܧܯ ܴଶ Point elasticity 

   (months)   (months) (months)  Mean Min Max 

Petrochemicals: Olefins 70 -5.877*** 7.831 1.634*** 2.428*** 17.409 37.968 0.524 -0.429 -2.330 17.556 

  (1.790)  (0.423) (0.425)       

Petrochemicals: Plastics 60 -4.095 1.342 11.909 2.078*** 10.197 32.530 0.331 -1.396 -1.902 -0.670 

  (2.941)  (12.138) (0.659)       

Refineries: Simple 145 -1.779 0.533 40.277** 1.583*** 14.600 29.825 0.389 -0.330 -1.429 2.730 

  (2.455)  (16.410) (0.573)       

Refineries: Complex 167 1.067 0.531 3.897 0.475 5.370 29.094 0.205 -0.348 -0.461 -0.022 

  (1.757)  (9.558) (.334)       

Refineries: Very complex 10 3.200 2.341 17.938 0.205 209.351 40.410 0.939 0.491 0.413 1.955 

  (4.150)  (12.587) (1.022)       

Total 452 — — — — — — — — — — 

* p < 0.1, ** p < 0.05, *** p < 0.01 
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Appendix Table 6: The distribution of elasticities for the extended model (6) OLS estimation with region dummies (DV: ln  ሻܥ

Point elasticity Realized ݐ ߶⁄  Total 

 1.00–1.25 1.26–1.50 1.51–1.75 1.76–2.00 2.01–10.00 10.01–20.00 20.01–30.00 30.01–40.00 40.01–50.00 Over 50.00  

Mean — 13.502 5.111 — -1.475 -0.030 -0.492 -0.519 -0.627 -0.769 — 

Min — 8.640 4.519 — -2.216 -2.330 -1.652 -1.744 -1.813 -1.902 — 

Max — 17.556 5.471 — 0.638 2.730 0.643 0.413 -0.373 -0.394 — 

S.D. — 3.696 0.517 — 0.733 1.410 0.764 0.470 0.390 0.374 — 

(-3.00) – (-2.50) 0 0 0 0 0 0 0 0 0 0 0 

(-2.49) – (-2.00) 0 0 0 0 16 8 0 0 0 0 24 

(-1.99) – (-1.50) 0 0 0 0 18 0 11 9 4 3 45 

(-1.49) – (-1.00) 0 0 0 0 10 18 6 0 0 36 70 

(-0.99) – (-0.50) 0 0 0 0 5 9 0 3 20 29 66 

(-0.49) – 0.00 0 0 0 0 3 22 25 57 22 65 194 

0.01 – 0.50 0 0 0 0 0 0 8 1 0 0 9 

0.51 – 1.00 0 0 0 0 3 7 5 0 0 0 15 

1.01 – 1.50 0 0 0 0 0 7 0 0 0 0 7 

1.51 – 2.00 0 0 0 0 0 6 0 0 0 0 6 

2.01 – 2.50 0 0 0 0 0 2 0 0 0 0 2 

2.51 – 3.00 0 0 0 0 0 7 0 0 0 0 7 

3.01 – 3.50 0 0 0 0 0 0 0 0 0 0 0 

3.51 – 4.00 0 0 0 0 0 0 0 0 0 0 0 

4.01 – 10.00 0 1 3 0 0 0 0 0 0 0 4 

Over 10.00 0 3 0 0 0 0 0 0 0 0 3 

Total 0 4 3 0 55 86 55 70 46 133 452 
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Appendix Table 7: Variable definitions 

Variables Definition Data Source 

 ௖̂,௧ Time-cost elasticity estimated in OLS in Stage 1 Oil and Gas Journal (OGJ)ߝ

௖̂,௧ߝ
௜  Firm-specific time-cost elasticity predicted by RCM in Stage 1 OGJ 

 ො௜ Firm-specific direct cost coefficient predicted by RCM in Stage 1 OGJߙ

 መ௜ Firm-specific indirect cost coefficient predicted by RCM in Stage 1 OGJߚ

 Project actual cost (deflated to 1996) OGJ ܥ

 Number of months of plant development OGJ ݐ

New-to-the-firm technology = 1 if firm invests in this project type for the first time (in our data) OGJ 

Firm size Logarithm of total firm sales, deflated to 1996 
Compustat, Consumer Price Index 
from the Bureau of Labor Statistics 

Project size 
Measures: (a) project expected cost, (b) project actual cost, (c) project 
capacity. All measures logarithmized. All costs deflated to 1996 

OGJ, Consumer Price Index from the 
Bureau of Labor Statistics 

Trade barriers 
Average level of tariffs in the host country interacted with a dummy = 1 
if the firm has not executed a project in the host country in the past 

World Development Indicators (WDI) 
from the World Bank, OGJ 

Experience with technology Number of projects of the same type executed by firm in data in the past OGJ 

R&D intensity R&D expenses divided by total assets Compustat 

Firm age Number of years since firm founding Compustat, web-based reports 

Country development Gross national income (GNI) per capita WDI from the World Bank 

Political constraints 
Political constraints index: higher values indicate more constraints on 
host country government and lower political risk 

Henisz (2000) 

FDI (dummy) = 1 if the firm country differs from the project country OGJ, web-based reports 

Subcontractor (dummy) = 1 if a contractor was used on the project OGJ 

 
 
 
 
 


